
Mol Ecol Resour. 2023;23:1589–1603.    | 1589wileyonlinelibrary.com/journal/men

1  |  INTRODUC TION

The distribution of fitness effects (DFE) of new mutations can be 
described as the probability that a new mutation will have a spe-
cific effect on the fitness of an individual. This probability distri-
bution affects the accumulation of genetic variation and can thus 

directly impact the evolutionary trajectory of organisms (Bataillon 
& Bailey, 2014; Keightley & Eyre- Walker, 2007; Ohta, 1992). 
Understanding the DFE is integral to understanding molecu-
lar evolution and remains an important focus in modern evo-
lutionary theory (Chen et al., 2020; Halligan & Keightley, 2009; 
Kimura, 1968; Ohta, 1973). To date, the arguably most popular 
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Abstract
The distribution of fitness effects (DFE) of new mutations has been of interest to evo-
lutionary biologists since the concept of mutations arose. Modern population genomic 
data enable us to quantify the DFE empirically, but few studies have examined how 
data processing, sample size and cryptic population structure might affect the accu-
racy of DFE inference. We used simulated and empirical data (from Arabidopsis lyrata) 
to show the effects of missing data filtering, sample size, number of single nucleotide 
polymorphisms (SNPs) and population structure on the accuracy and variance of DFE 
estimates. Our analyses focus on three filtering methods— downsampling, imputation 
and subsampling— with sample sizes of 4– 100 individuals. We show that (1) the choice 
of missing- data treatment directly affects the estimated DFE, with downsampling 
performing better than imputation and subsampling; (2) the estimated DFE is less reli-
able in small samples (<8 individuals), and becomes unpredictable with too few SNPs 
(<5000, the sum of 0-  and 4- fold SNPs); and (3) population structure may skew the 
inferred DFE towards more strongly deleterious mutations. We suggest that future 
studies should consider downsampling for small data sets, and use samples larger than 
4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the 
robustness of DFE inference and enable comparative analyses.
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methods of inferring the DFE are based on contrasting frequen-
cies of putatively neutral and selected polymorphisms presented 
as a site frequency spectrum (SFS), describing how commonly mu-
tations of different frequencies occur in a population (Gutenkunst 
et al., 2009; Keightley & Eyre- Walker, 2007; Kim et al., 2017; 
Tataru & Bataillon, 2019). Since the SFS can be affected by both 
neutral and selective processes, most methods use the SFS of 
synonymous mutations to estimate a demographic model repre-
senting the effects of population size changes and genetic drift. 
Meanwhile, the SFS of nonsynonymous mutations are assumed 
to be shaped by both neutral and selective processes and can 
therefore be used to estimate the DFE of non- neutral mutations 
after demography and drift have been accounted for (Boyko 
et al., 2008; Huang et al., 2021; Keightley & Eyre- Walker, 2007; 
Kim et al., 2017; Schneider et al., 2011; Tataru & Bataillon, 2019). 
However, factors other than demography and selection may also 
affect the shape of the SFS and thus the estimated DFE.

First, SFS- based DFE inferences require that data sets contain no 
missing sites— all individuals must have complete data for all loci that 
are to be analysed. Since sequencing techniques are imperfect, such 
data sets are uncommon (probably nonexistent) in empirical popu-
lation genomics. As a result, missing- data treatment is an essential 
first step of data processing. To obtain a complete data set, these 
data are treated either by filtering out some portion of the data (sub-  
or downsampling), or filling in the ‘gaps’ using an algorithm such as 
imputation (see Section 2.2). Depending on how the treatment is 
performed, there is a risk of altering the relative allele frequencies 
in the data set, yielding misleading results (Johri et al., 2021; Larson 
et al., 2021). Recent studies on DFE have applied different data pro-
cessing methods; for example, see Hämälä and Tiffin (2020) for im-
putation, and Gossmann et al. (2010) for downsampling. However, it 
is unknown whether and how the different methods influence DFE 
estimates.

Second, the sizes of data sets used in published DFE studies 
vary enormously, from as few as two to several hundred individuals 
(Chen et al., 2017; Hämälä & Tiffin, 2020). The SFS is highly sensi-
tive to sample size, but the minimum number required to achieve 
stable DFE estimates remains undetermined (but see Kutschera 
et al., 2020). Similarly, the number of polymorphic sites necessary 
for reliable DFE estimation is largely unknown. While some studies 
of model species use whole genome sequencing with millions of sin-
gle nucleotide polymorphisms (SNPs) available for analysis (Hämälä 
& Tiffin, 2020), others may only include a few hundred SNPs (Eyre- 
Walker & Keightley, 2009; Gossmann et al., 2010). Therefore, inves-
tigating the impact of sample size (both the number of individuals 
and sites/SNPs) on DFE estimates is crucial for reliable and accurate 
DFE estimation.

Finally, most methods of SFS- based DFE estimation first es-
timate a Wright– Fisher demographic model from the neutral 
variation in order to control for neutral factors affecting the SFS 
(Keightley & Eyre- Walker, 2007; Tataru & Bataillon, 2019). Such 
models assume that mating occurs at random in panmictic popu-
lations, even though complete absence of population structure is 

likely rare in wild samples. For example, sampling from a large area 
is preferred for drawing general conclusions about population ge-
netic dynamics, but it increases the likelihood of including genetic 
structure in the sample (Perez et al., 2018; Zhao et al., 2020). If 
cryptic genetic clusters are unwittingly included, the demographic 
model estimated from the data would not fulfil the assumptions 
underlying the Wright– Fisher model, and subsequent DFE esti-
mates might be biased. However, population stratification has not 
to our knowledge been examined as a potential factor affecting 
the accuracy of DFE inference.

In this study, we test whether and how data processing meth-
ods, sample size, SNP number and population structure influence 
the results of DFE inference, to raise awareness of their poten-
tial confounding effects. We used whole genome resequencing 
data from two populations of Arabidopsis lyrata (subsp. petraea) 
to create multiple data sets (Figure 1) with (1) three different 
methods of missing- data treatment— downsampling, imputation 
and subsampling— under different filtering thresholds; (2) differ-
ent numbers of randomly sampled individuals and sites; and (3) 
samples with induced population stratification, to be contrasted 
with uniform, single populations. Then, we conducted forward 
simulation in SLiM 4.0 (Haller & Messer, 2023) to create a popula-
tion with a known DFE that matches DFEs estimated in A. lyrata. 
Using this known DFE, we evaluate the accuracy of DFE estimates 
resulting from the different data manipulations. By contrasting 
the results obtained from the different procedures, we aim to an-
swer the following questions: (1) Do data processing methods and 
missing- data filtering thresholds affect DFE estimation, and if so, 
how? (2) How many individuals and SNPs are needed to reach an 
accurate DFE estimate? and (3) Does population structure affect 
the DFE, and if so, how? Our results illustrate the importance of 
careful consideration of all steps in genomic data processing and 
analysis, both when performing DFE inference and when inter-
preting its results.

2  |  MATERIAL S AND METHODS

2.1  |  Genomic data set and basic quality control

We downloaded the whole genome resequencing data for two 
populations of the perennial, diploid obligately outbreeding 
Arabidopsis lyrata subsp. petraea, 29 individuals from Austria 
and 16 individuals from Norway, from the NCBI SRA database 
(Table S1). The quality of the sequence reads was first assessed 
with FastQC (http://www.bioin forma tics.babra ham.ac.uk/proje 
cts/fastq c/). Adapter sequences and low- quality bases were re-
moved using fastp v0.23.0 (Chen et al., 2018) with the parameters 
‘- q 20 - l 36 - - cut_front - - cut_tail - c’. Clean reads were mapped to 
the A. lyrata v.1.0 genome (https://plants.ensem bl.org/) using the 
BWA- MEM algorithm with default parameters (Li, 2013). PCR du-
plicates were removed using Picard MarkDuplicates (http://broad 
insti tute.github.io/picar d/). Reads around putative insertions and 
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deletions were locally realigned using RealignerTargetCreator and 
IndelRealigner in the Genome Analysis Toolkit (GATK v.3.7- 0; Van 
der Auwera et al., 2013). Variants were called using the SAMtools 
and BCFtools pipeline as described previously (Li, 2011). Several 
filtering steps were performed to minimize genotyping errors: 
indels and SNPs with mapping quality (MQ) <30 were removed, 
genotypes with genotype quality (GQ) <20 or read depth (DP) <5 
were masked as missing, and all SNPs with a missing rate above 
50% or allele number above 2 were removed. After these basic fil-
tering steps, a total of 122,432,856 sites (including invariant sites) 
were retained in the 45 samples for the following analyses.

2.2  |  Missing- data treatment methods

Missing genotypes are common in genomic data sets and should be 
eliminated before generating an SFS. We tested three methods to 
treat missing values on the same original data sets— downsampling, 
imputation and subsampling (Figures 1a and 2), and then compared 
the DFE inferred from each resulting data set using bootstrapped 
95% confidence intervals (CIs).

Downsampling is performed by randomly selecting n genotypes 
at each site without replacement (Keightley & Eyre- Walker, 2007); 
sites with fewer than n genotypes available are removed. A 75% 

F I G U R E  1  Experimental design. 
We performed three sets of tests to 
understand the potential influence on 
the estimated distribution of fitness 
effects (DFE) of: (a) three methods of 
missing- data treatment, (b) the number 
of individuals and sites used, and (c) 
population structure. Each box represents 
a derived data set, with the number of 
individuals shown on top and nucleotide 
sites below. The study involved two 
populations of Arabidopsis lyrata from 
Austria and Norway. We created merged 
populations with subsets of individuals 
from Austria and Norway as specified on 
the left of each of the merged boxes (c, 
greyed out). The estimated DFE of the 
merged population are compared to that 
of the contributing populations.
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downsampling threshold in a sample size of 100 individuals means 
that 75 random genotypes are sampled at each site (Figure 2). Sites 
that contain <75 genotypes are removed. In this study, we applied 
downsampling at thresholds 75%, 66% and 50% on both Austrian 
and Norwegian data sets. The same set of sites were kept and an-
alysed in both populations, making direct comparisons of the DFE 
between populations possible. Downsampling was performed using 
a Python script available on Dryad (Papadopoulou & Knowles, 2015) 
with minor modification (https://github.com/hui-liu/Bioin forma tics-
Scrip ts/blob/maste r/Scrip ts/Pytho n/sampl eDown MSFS_Hui_final.
py).

Imputation refers to the statistical inference (‘filling in’) of miss-
ing genotypes using the available linkage information from success-
fully genotyped samples (Figure 2). We tested thresholds 70%, 80% 
and 90% on the A. lyrata data sets (i.e. excluding sites with less than 
70%, 80% and 90% genotype information available), and filled in 
the missing genotypes at all other sites using Beagle v5.1 (Browning 

et al., 2018) with default parameters. We performed imputation 
using all individuals from both populations, as imputation accuracy 
tends to increase with sample size, as shown by previous studies 
(Pook et al., 2020).

Subsampling works in two steps: (1) Individuals who are missing 
more than a prescribed fraction of their genotype information are 
excluded, and (2) for the individuals remaining, any site with a miss-
ing genotype is removed (Figure 2). This means that the size of a sub-
sampled data set is highly dependent on the individual missing rates 
and the distribution of missing data across the genome. We first 
calculated the missingness on a per- individual basis using the pa-
rameter ‘- - missing- indv’ in VCFtools (Danecek et al., 2011). We then 
extracted the individuals that had missing rates below the thresh-
old value using ‘- - keep’, and finally, we removed all sites containing 
missing genotypes by setting the parameter ‘- - max- missing 1’ in 
VCFtools. In the A. lyrata data set, we tested four maximum missing 
rates per individual— 10%, 15%, 20% and 25% (Note: no individual 

F I G U R E  2  Methods of missing- data 
treatments for site frequency spectrum 
based analyses. Illustration of the 
different steps involved in the three 
missing- data filtering methods examined 
in this study. Each box corresponds to 
an individual's genotype at a site, and 
missing boxes represent missing data 
for a genotype. In downsampling, step 
1 excludes sites at which data is missing 
in more than a prescribed threshold 
of individuals (e.g. 25%), while step 2 
samples genotypes without replacement 
from the remaining data at each site. In 
imputation, as in downsampling, step 1 
excludes sites with missing rate more than 
a prescribed fraction, while step 2 imputes 
(fills in) missing data. In subsampling, step 
1 excludes individuals with missing data in 
more than a prescribed fraction of sites, 
while step 2 excludes all sites with missing 
data.
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had more than 25% missing data). Note that with higher subsampling 
thresholds, more individuals but fewer sites are retained (Figure 1a).

2.3  |  Sample size and SNPs number

To decouple the potential effects of the number of individuals and/
or sites on DFE estimation, we randomly sampled 4, 8, 12, 16, 20, 24 
or 29 (all) individuals and/or 1K, 10K, 100K, 1M, 10M or 55.0M sites 
from the Austrian population subsampled at a maximum missing rate 
of 25% per individual (Figure 1). To investigate the effect of sample 
size, we kept all sites and compared samples with different num-
bers of individuals (4– 29). Conversely, to investigate the effect of the 
number of SNPs included in the SFS, all 29 individuals were kept and 
a randomly chosen subset of 1K to 10M sites were extracted. Finally, 
the same subsets of 1K to 10M sites were extracted from a data set 
with only four individuals. By comparing the DFEs from 4 versus 29 
individuals for each set of sites, we could see the combined effects 
of the number of individuals and sites on the estimated DFE and 
confidence intervals (Figure 3).

2.4  |  Manipulating population structure

To gain an overview of the genetic differentiation between the 
Austrian and Norwegian populations, we performed a principal com-
ponent analysis (PCA) on the 45 sampled individuals using Eigensoft 
v.6.1.4 (Price et al., 2006). The data set was filtered at a maximum 
missing rate of 20% per site and a minor allele frequency (MAF) ≥0.05, 
retaining 3,921,575 SNPs for the PCA. To investigate whether popu-
lation structure affects DFE estimates, we randomly selected three 
different subsets (labelled a, b and c) of 10 and 15 individuals from 
each of the Austrian and Norwegian populations, imputed at an 80% 
threshold. Single sets from each population were then combined to 
form 12 new merged populations with four different configurations 
(Figure 1c): 10 Austrian + 10 Norwegian individuals, 10 Austrian + 15 
Norwegian individuals, 15 Austrian + 10 Norwegian individuals and 
15 Austrian + 15 Norwegian individuals, each with three replicates. 
We then estimated the DFE for each subset and all merged samples.

Using the single and merged data sets, we investigated (1) the 
effect of sample choice within a geographic population on DFE, by 
comparing the three replicate subsets from a single population (e.g. 

F I G U R E  3  Effects of number of individuals and sites on distribution of fitness effects (DFE). DFE estimated from Arabidopsis lyrata, (a) 
random samples of 4, 8, 12, 16, 20 and 24 of the 29 individuals of the Austrian population with 55M sites; (b) all 29 individuals, (c) a random 
sample of 4 individuals with 1K, 10K, 100K, 1M, 10M and 55M sites. The complete DFE is represented as percentage contribution of each of 
four categories of mutations: neutral (blue), slightly deleterious (yellow), moderately deleterious (orange) and strongly deleterious (red). The DFE 
for each sample size is represented in two ways: on the left as stacked estimated percentages of the four categories of mutations, and on the 
right as the estimated percentage of each category of mutations (black bars) together with the 95% confidence intervals (darker coloured 
areas).
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replicates a vs. b vs. c of subset Aus10), (2) the effect of each geo-
graphic population on the merged population, by comparing the DFE 
of the merged population to each of the contributing populations 
(e.g. replicate c of merged population Aus10 + Nor15 vs. replicate c 
of subsets Aus10 and Nor15) and (3) the effect of population differ-
entiation (FST) on DFE in the merged population. The weighted FST 
between the two contributing subsets in each merged population 
was calculated using VCFtools.

2.5  |  DFE analyses

We used DFE- alpha (Eyre- Walker & Keightley, 2009), a software that 
uses a maximum- likelihood approach to determine the shape of the 
DFE of nonsynonymous mutations. In the simplest model, DFE- alpha 
assumes that mutations at synonymous sites are selectively neutral 
and that all nonsynonymous mutations are deleterious. DFE- alpha 
first estimates a simple demographic model using the SFS of neutral 
mutations to represent the effect of drift. We modelled the effect 
of recent demographic change on neutral SFS by assuming one step 
population size change and inferred the fitness of new deleterious 
mutations at the selected sites from a gamma distribution while si-
multaneously fitting the estimated parameters for the demographic 
model. The estimated fitness effects of new mutations are scaled by 
effective population size Ne and selection coefficient s as Nes, and 
divided into four categories: effectively neutral (0 < −Nes ≤ 1), slightly 
deleterious (1 < −Nes ≤ 10), moderately deleterious (10 < −Nes ≤ 100) and 
strongly deleterious (−Nes > 100). The DFE is presented as the propor-
tion of nonsynonymous mutations that is expected to fall into each 
of these categories.

We generated a folded SFS for a class of putatively neutral ref-
erence sites (4– fold degenerate sites) and a class of selected sites 
(0- fold degenerate sites) for each data set. We modelled the effects 
of recent demographic change on the 4– fold sites SFS by assuming a 
single population size change event and inferred the fitness of new 
deleterious mutations at the 0- fold sites from a gamma distribution. 
The 95% CIs for all DFE estimates were calculated by bootstrapping 
0- fold and 4– fold sites with replacement for 99 iterations. We per-
formed bootstraps using 999 and 99 iterations in nine samples and 
found no discernible difference in CI size; all reported CIs are thus 
based on 99 iterations.

2.6  |  Simulations in SLiM

To validate the effects of filtering methods and sample size on DFE 
estimates, we used SLiM 4.0 to simulate a population with a known 
DFE, represented by a gamma distribution with shape (β) and mean 
(Es) parameter values matching the DFE estimated in A. lyrata. The 
simulation consisted of a population of 10,000 outcrossing individu-
als with a genome size of 5 million sites on one contiguous chro-
mosome, and a uniform recombination rate of 4 × 10−8 (Hämälä 
& Tiffin, 2020). New mutations occurred at a mutation rate of 

5.6 × 10−8 and were drawn from a deleterious DFE with a gamma dis-
tribution with β = 0.1 and Es = −100. The population state at 60,000 
generations was saved as a .trees file, at which point the effective 
population size Ne had stabilized around 100 individuals with 72,330 
segregating deleterious mutations. A neutral burn- in and segregat-
ing neutral mutations were then added with recapitation and over-
laid mutations based on tree sequence recording, which enables 
introduction of neutral mutations as though they occurred during 
the simulation by tracking the genealogy of each genome backwards 
in time. By overlaying mutations with a mutation rate of 1.4 × 10−8 
for neutral mutations, a total of 23,846 segregating neutral muta-
tions were introduced according to SLiM 4.0 (Haller et al., 2019). 
The resulting data set thus reflects a total mutation rate of 7.0 × 10−8 
with a likelihood of selected to neutral mutations occurring at a ratio 
of 4:1. After adding neutral mutations, the VCF file with 1000 ran-
domly sampled individuals was created and nonsegregating sites (se-
lected or neutral) were added between SNP positions and randomly 
assigned as either selected (20%) or neutral (5%) to approximate the 
0- fold and 4– fold ratios in the empirical A. lyrata data set. The result-
ing VCF file was used in subsequent analyses with DFE- alpha.

To get a baseline accuracy for DFE- alpha, 10 replicates of 100 in-
dividuals (the maximum size supported by DFE- alpha) from the sim-
ulated data set were analysed, and the estimation error compared 
with the known DFE was in each case assessed as the Earth Mover's 
Distance (see below). To investigate the effects of filtering methods, 
15% of the sites in each individual in one set of 100 individuals were 
masked as missing. This data set was filtered with (1) downsampling 
at a threshold of 85%, (2) imputation at a threshold of 85% or (3) 
subsampling at a threshold of 15%. However, the subsampled data 
set retained no 4– fold SNPs in the SFS after filtering, making DFE 
estimation impossible. We thus instead sampled four replicates of 4, 
8, 12, 16, 20, 24 and 50 individuals from the 15% missing data set, 
and applied subsampling at 100% (i.e. all sites with missing data were 
excluded). The same sets of sample sizes were then extracted from 
the downsampled and imputed data sets to compare the accuracy of 
the different methods while controlling for the effect of sample size. 
To directly investigate the effect of sample size and SNP number, 
10 replicates of 4, 8, 12, 16, 20, 24, 50 and 100 individuals were 
extracted from the data sets with no missing data and analysed with 
DFE- alpha (Figure 4a– d).

With the DFE associated with the simulated data sets being 
known, the accuracy of estimated DFE was assessed by comparing 
them to the known DFE using Earth Mover's Distance (EMD) im-
plemented in the transport package in R (Schuhmacher et al., 2019). 
Earth Mover's Distance quantifies the dissimilarity between two dis-
tributions as the ‘work’ required to change one distribution to the 
other, thus taking into account the amount of overlap. In contrast 
to the widely used Kolmogorov– Smirnov (KS) distance, EMD is not 
limited by an upper bound, enabling it to more accurately capture 
substantial differences between distributions. Additionally, EMD 
is better suited for gauging distances between distributions with 
long tails. The EMD was evaluated within the range −105 < s < −10−3 
where s represents the selection coefficient for each mutation, in 
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increments of 10−3. Higher EMD values signify a poorer fit between 
the estimated and true distribution, thus indicating a less accurate 
result. The EMD values of each data set was plotted against the 
number of individuals and SNPs with a regression line to illustrate 
the relationship.

3  |  RESULTS

3.1  |  The effect of missing- data treatments on DFE 
in A. lyrata

3.1.1  |  Downsampling

The data sets downsampled to 50%, 66% and 75% of the geno-
types per site retained 105.7M, 99.5M, and 95.0M sites, respec-
tively, for both A. lyrata populations (Table 1). The Austrian data 

sets contained 15, 19 and 22 ‘individuals’ and 1.39M, 1.46M and 
1.47M SNPs (sum of 0–  and 4– fold SNPs) for the three thresholds, 
while the Norwegian population kept 8, 11 and 12 ‘individuals’ and 
374K, 366K and 341K SNPs, respectively. The DFE in the Norwegian 
data sets differed significantly from that of the Austrian population 
in that neutral mutations were more frequent (31%– 33%), while 
slightly (8%– 9%) and moderately (10%– 12%) deleterious mutations 
were less frequent, but the proportion of strongly deleterious mu-
tations was similar (45%– 51%) (Table 1). Additionally, the impact of 
filter thresholds from 50% to 75% on the three deleterious groups of 
mutations in the two populations showed inverse patterns, for ex-
ample strongly deleterious mutations increased with the threshold 
in the Norwegian population but decreased in the Austrian popula-
tion. While the estimated DFE varied between populations by 1– 10 
percentage points under the same method and threshold, it also var-
ied by up to 5 percentage points among the downsampling thresh-
olds within each population.

F I G U R E  4  Accuracy of distribution 
of fitness effects (DFE) estimations by 
manipulating SLiM simulated data set. 
DFE estimates and 95% confidence 
intervals for 4, 8, 12, 16, 20, 24, 50, and a 
maximum of either 85 (in downsampling) 
or 100 (in the other cases) individuals, 
with either (a) no missing data, or 15% 
missing data per individual and filtered 
with either (b) downsampling, (c) 
imputation or (d) subsampling. (e) DFE 
estimation error, as represented by Earth 
Mover's Distance (EMD), in different 
sample sizes without missing data (black, 
10 replicates (n) per sample size), or 
with 15% missing data and filtered with 
either downsampling (green), imputation 
(red) or subsampling (yellow), in four 
replicates each. (f) DFE estimation 
error in samples plotted against single 
nucleotide polymorphism (SNP) number, 
in data sets without missing data (black) 
as well as with missing- data filtered by 
downsampling (green), imputation (red) 
or subsampling (yellow). Linear regression 
lines for the no missing data (black) and 
for all of the filtered data sets combined 
(brown) are displayed to show the trend 
of EMD over SNP number (0- fold and 
4- fold SNPs) in the two groups. Data sets 
without missing data include 10 replicates 
of 4– 100 individuals, while four replicates 
of 4– 50 individuals are included for the 
missing- data filtered data sets.
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3.1.2  |  Imputation

The imputed data sets retained all individuals (i.e. 29 Austrian and 16 
Norwegian individuals), and 103.4M, 97.9M and 86.3M sites at the 
70%, 80% and 90% thresholds, respectively. In the Austrian popu-
lation, 1.69M, 1.63M and 1.44M SNPs were included, while 399K, 
365K and 341K SNPs in the Norwegian population, at the three 
thresholds, respectively. Increasing the threshold from 70% to 90% 
only caused 2– 4 percentage points of variation in each category of 
mutations (Table 1). Across both populations, the DFE were stable 
among imputation thresholds, with the Austrian population display-
ing slightly larger variance.

3.1.3  |  Subsampling

In the subsampling trial, we applied four different thresholds, allow-
ing a maximum of 10%, 15%, 20% and 25% missing genotypes per 
individual. In the Austrian population, a strict threshold of 10% miss-
ing data left eight individuals, 97.4M sites and 844K SNPs in the data 
set, while a relaxed 25% threshold preserved all 29 individuals with 
55.0M sites and 609K SNPs (Note: increasing the missing rate from 
20% to 25% only added one more individual) (Table 1). Increasing the 
missing threshold from 10% to 25% decreased the estimated neutral 
mutations from 23% to 20%, and the strongly deleterious mutations 
from 49% to 32%, while the slightly and moderately deleterious mu-
tations increased from 11% to 17% and from 17% to 30%, respec-
tively. Overall, change the threshold from 10% to 15% induced the 
largest difference in the DFE of all stepwise increases (3– 8 percent-
age points of difference in all categories).

In the Norwegian population, the data set filtered with a miss-
ing rate of 10% included only two individuals with 109.4M sites and 
249K SNPs. At this level, the DFE was estimated to 7% neutral, 86% 
slightly deleterious, 6% moderately deleterious and no strongly del-
eterious mutations. Increasing the threshold to 15% increased the 
number of individuals to 15, retaining 80.0M sites and 172K SNPs, 
and shifted the DFE to 28% neutral, 8% slightly deleterious, 10% 
moderately deleterious and 53% strongly deleterious mutation. 
Further relaxing the missing rate to 20% and 25% included one more 
individual (16 total) and had little effect on the DFE compared with 
the data set filtered at 15% (Table 1). Overall, the Austrian popu-
lation displayed up to 17 percentage points of difference between 
thresholds, while the Norwegian population displayed up to 79 per-
centage points of difference when including the data set filtered at 
10% missing data.

3.2  |  The effect of sample size and sites on DFE

We subsampled the Austrian population of A. lyrata into 4, 8, 12, 
16, 20 and 24 individual sets, each containing 211K, 320K, 357K, 
426K, 512K and 557K SNPs, respectively, from the complete data 
set of 29 individuals containing 609K SNPs (Figure 3b). We found 

that decreasing the sample size from 29 to 4 substantially increased 
the proportion of strongly deleterious mutations from 32% to 45%, 
while it decreased the proportion of slightly deleterious mutations 
from 17% to 13% and moderately deleterious mutations from 30% 
to 20%. Neutral mutations changed only slightly (from 20% to 22%) 
(Figure 3a). The partition of DFE remained stable with sample sizes 
of 8 and upward (≤1 percentage point of fluctuation). The 95% CIs 
remained similar and narrow (0.5%– 4%) in all samples.

In the second trial, we randomly sampled 1K, 10K, 100K, 1M 
and 10M sites in the 29 individuals (with 55.0M sites, 609K SNPs), 
resulting in 10, 109, 1115, 11.1K and 111K SNPs, in each data set, 
respectively. We found that the DFE estimates became increasingly 
unstable with decreasing the number of sites: the data sets with 
fewer than 1M sites (11.1K SNPs) showed a large variation in DFE 
values (8– 50 percentage points; Figure 3b). Notably, a decrease in 
the number of sites brought a simultaneous increase of the width 
of the 95% CIs, in a manner not seen when decreasing the numbers 
of individuals (Figure 3a vs. b). At 1K sites (10 SNPs), the 95% CIs 
for the three deleterious categories covered 98%– 100% of the en-
tire range of possible values, indicating low confidence in where the 
true values lie. At 10K sites (109 SNPs), the CIs shrunk but were still 
large, covering between 34%– 71% of the possible values. On aver-
age, each 10- fold decrease in the number of sites increased the size 
of the bootstrapped 95% CIs 2.5 times.

In the third trial, we examined the effect of sites in a small sample 
of four individuals. The sites chosen were the same as those in the 
second trial, although the set of 1K sites included too few SNPs to be 
evaluated and was not shown in Figure 3c. The data sets with 10K, 
100K, 1M, 10M and all 55.0M sites had 43, 391, 3821, 38.6K and 
211K SNPs, respectively. At 10K sites, the DFE in the 4- individual 
set was drastically different from the 29 individuals. Furthermore, 
the 95% CIs of neutral, and slightly and moderately deleterious mu-
tations increased by 18%– 81% in the 4- individual relative to the 
29- individual data set. The CI for strongly deleterious mutations 
shrank somewhat in the 4- individual data set but was still large and 
spanned 66% of the range of possible values. The DFE estimates at 
100K sites and above in 4- individual data sets were very similar (≤1 
percentage point of difference) to the second trial using 29 individ-
uals (Figure 3c vs. b), but the 95% CIs approximately doubled for the 
three classes of deleterious mutations.

3.3  |  Accuracy of DFE- alpha in SLiM simulated data

To determine which missing- data treatment and sample sizes pro-
duced the smallest error and thus approximated the true DFE most 
accurately, we conducted SLiM simulations with a known DFE. The 
simulation produced a data set with 1000 individuals and 29,944 
SNPs. Using 10 replicate samples of 100 individuals, each contain-
ing ~15,500 SNPs, the DFE was estimated to 29%– 31% neutral, 
8%– 10% slightly deleterious, 10%– 13% moderately deleterious and 
48%– 52% strongly deleterious mutations; the true DFE should be 
approximately 30% neutral, 9% slightly deleterious, 11% moderately 

 17550998, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13825 by C

ornell U
niversity, W

iley O
nline L

ibrary on [17/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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deleterious and 50% strongly deleterious mutations, meaning an 
error of ±1%– 2% can be expected with this data set in optimal con-
ditions. The β and Es parameters of the gamma distributions were 
estimated to 0.097– 0.128 and −276 −33, respectively, yielding error 
values (EMD × 107) of 3.5– 20.5 (Figure 4e). These values are used 
as reference for the ‘maximum’ accuracy of DFE- alpha for the simu-
lated data set.

To evaluate the effect of filtering methods, we masked 15% of 
the genotypes per individual as missing  and excluded all missing 
sites in samples of 4, 8, 12, 16, 20, 24 and 50 individuals (4 repli-
cates of each), which mimics the effect of subsampling at different 
thresholds. In order to compare these results to downsampling and 
imputation, the same sample sizes were extracted from the downs-
ampled and imputed data sets created at 85% threshold from the 
full data set. At a sample size of four individuals, all three methods 
performed roughly equally well (average EMD was 33.7, 36.4 and 
36.5 for downsampling, imputation and subsampling, respectively. 
Figure 4b– e, Table S2), but subsampling tended to slightly under-
estimate the proportion of slightly and moderately deleterious 
mutations (by up to 5 and 7 percentage points, respectively), and 
overestimate strongly deleterious mutations (by up to 11 percent-
age points). Downsampling gave the most accurate results based 
on the average EMD across all sample sizes above eight individu-
als (Figure 4b,e). Imputation performed slightly worse in all sam-
ples except eight individuals (Figure 4c,e). Both downsampling and 
imputation produced results within 1– 3 percentage points of the 
range of the reference set at all sample sizes above four individu-
als. Subsampling, however, produced highly variable and noticeably 
less accurate results even at higher sample sizes (Figure 4d,e). For 
example, the four replicates of 24 individuals produced EMD values 
between 3.7– 18.8 for downsampling, 12.3– 47.4 for imputation and 
31.2– 112.8 for subsampling (Table S2). We found that subsampling 
produced the most accurate results at an intermediate sample size 
(e.g. 16 individuals; EMD from 1.7 to 56.1) and became less accurate 
at sample sizes where fewer SNPs were retained (e.g. 50 individuals 
with 5 SNPs remaining; Figure 4b, Table S2).

Our simulated data verified the trends observed in the empirical 
data, showing that increased sample size correlated with lower error 
in DFE estimates when the number of SNPs is not a limiting factor. In 
the data sets of 4, 8, 12, 16, 20, 24 and 50 individuals (10 replicates 
of each) with no missing genotypes, the EMD values were the largest 
in samples of 4 and 8 individuals, stabilized around 12– 24 individu-
als, and then decreased further in 50 individuals to a level similar 
to that in the 100 individuals (Figure 4e). Linear regression in these 
data sets showed that DFE estimation error (EMD) was negatively 
correlated with number of individuals (p = .00179, R2 = .1182), and 
even more strongly correlated with the number of SNPs in the data 
set (p = 6.38 × 10−6, R2 = .2311) (Figure 4f). An even stronger nega-
tive correlation between EMD and SNP number was seen when the 
four replicates of 4– 50 individuals from the downsampled, imputed 
and subsampled data sets were analysed with a joint linear regres-
sion (p = 1.11 × 10−9, R2 = .3658) (Figure 4b). Data sets with few SNPs 
also displayed larger 95% CIs while the number of individuals had a 

minor effect on CI size (Figure 4a– d, Table S2), similar to what was 
observed in the empirical data sets.

In summary, applying different filtering methods and thresholds 
affected the final data matrix size (number of individuals and SNPs) 
and subsequent DFE estimates. Imputation and downsampling pro-
duced similar and less variable DFE results than subsampling, and 
downsampling appeared more accurate than imputation for the sim-
ulated samples used. Furthermore, higher numbers of individuals 
and SNPs both increased accuracy of the results, especially at very 
low sample sizes (4– 8 individuals, <5000 SNPs).

3.4  |  The effect of population structure on DFE

The PCA of the 45 samples from Austria and Norway showed a dis-
tinct separation of the two populations along PC1 (which explained 
24.7% of the total genetic variance), and separation of the Austrian 
population into four visible clusters along PC2 (which explained 
7.3% of the total genetic variance) (Figure S1). The weighted FST be-
tween the two populations was 0.228, while the FST among the four 
Austrian clusters was relatively small at 0.073. To understand the 
effect of merging genetically distinct populations on the estimated 
DFE, we created 12 merged populations with contributions of 10 
or 15 individuals from Austria and Norway, with three subsets of 
each population (Figure 1c). We then calculated the weighted FST 
between the contributing subsets to evaluate how the degree of 
population stratification in a sample affects the joint DFE estimate. 
We first examined the DFE in the unmerged replicate samples of 
10 and 15 individuals from the two populations. Among the repli-
cates of 10 individuals from the Austrian population, a maximum 
difference of 2, 3, 7 and 6 percentage points were observed in the 
neutral, slightly, moderately and strongly deleterious mutations. By 
comparison, no mutation category varied by more than 2 percent-
age points in the samples of 15 individuals. Comparably stable DFE 
estimates were observed in the Norwegian samples, with variation 
in the range of 0, 2, 3 and 4 percentage points for the four categories 
of mutations in samples of 10 individuals, and less than 1 percentage 
point of a difference among replicates of 15 individuals (Figure 4a). 
However, the DFE estimates were markedly different between the 
two geographical populations, for example neutral mutations shifted 
up by an average of 9 percentage points while the slight and moder-
ate mutations shifted downwards in Norway compared with Austria. 
The estimated proportions of strongly deleterious mutations were 
similar in the two populations.

With this population- specific DFE in mind, we then examined 
the differences between the merged samples and their respective 
contributing single population subsets. In most cases, the estimated 
DFE values for the merged samples were in- between the DFE esti-
mates of the contributing subsets, but not always perfectly inter-
mediate (Figure 5a). The estimated weighted FST values between 
the pairs of contributing subsets ranged from 0.218 to 0.263 (mean 
FST between 0.085 and 0.131). These estimates are largely in line 
with previous studies, where mean FST across European populations 
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of A. lyrata ranges between 0.06 and 0.09 (Marburger et al., 2019). 
Plotting the weighted FST against the estimated DFE in the merged 
populations showed an apparent relationship (Figure 5b). Using lin-
ear regression, FST was correlated with the proportion of neutral 
(R = .62, p = .031), slightly (R = −.73, p = .0073), moderately (R = −.72, 
p = .0081) and strongly deleterious mutations (R = .75, p = .0054). 
These results show that population structure had a significant effect 
on the DFE, with higher FST potentially driving up the estimated pro-
portion of neutral and strongly deleterious mutations and reducing 
the estimates of the less deleterious classes.

4  |  DISCUSSION

4.1  |  Methods of missing- data treatment affect 
DFE results

Missing- data treatment is the first step in any genomics analyses. 
Using simulated data with a known DFE, we were able to evaluate 
the accuracy of different filtering methods in recovering the true 
DFE. We found the data set with no missing data produced the most 
accurate result, followed by downsampling, then imputation, and 

then subsampling. The number of SNPs in the downsampled and 
imputed data sets were similar in all samples, suggesting that any 
difference in performance between the two methods is likely due to 
imputation affecting the shape of the SFS in a nonrandom manner. 
The assumption that deleterious mutations appear as low- frequency 
alleles in the SFS, in combination with the relatively small sample 
sizes used in the tests, makes an SFS- based analysis highly reliant 
on those low- frequency categories, especially singleton SNPs. This 
could explain our result, as imputation of low- frequency alleles dis-
play much higher error rates than higher frequency alleles in imputa-
tion procedures (Pook et al., 2020).

Filtering with subsampling produced the least accurate estimates 
on average. Since increasing the number of individuals in the subsa-
mpled data set decreases the number of sites, this filtering method's 
performance is thus affected by sample size in two ways, both the 
number of individuals and the number of SNPs available. This effect 
is expected to be especially strong in data sets where the distribu-
tion of missing data is random (as was the case in our simulated data 
sets), where a highly dissimilar pattern of missing data across indi-
viduals excludes a large number of sites by subsampling. This pattern 
was not as strong in the empirical data sets where the distribution 
of missing data across individuals was more similar, but still present. 

F I G U R E  5  Effect of population structure on distribution of fitness effects (DFE). (a) The estimated DFE of the Austrian (dark dots) 
and Norwegian (light dots) samples of Arabidopsis lyrata, compared to merged samples (solid lines) containing both groups in different 
combinations. The relative sample size from each population is listed along the horizontal axis (bottom), as well the name of each of three 
replicates (top). (b) Linear regression of the estimated proportion of each of the four mutational categories of the DFE over the FST between 
the merged samples, with 95% confidence intervals shown in shaded areas.
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Thus, intermediate sample sizes of individuals are preferable for this 
method.

The array of tested filtering thresholds on the empirical data sets 
corroborated the trend and conclusions drawn from the simulated 
data sets. The empirical data sets proved to be more sensitive to minor 
changes in filtering thresholds as even slight adjustments resulted in 
significantly different outcomes in some cases. The DFE estimates in 
the subsampled data sets were unpredictable, both within and among 
populations. This is most likely a result of substantial downsizing of 
the data matrix, since the total number of sites and SNPs were re-
duced by 50%– 90% in the subsampled data sets compared with the 
other two methods. Downsampling and imputation produced results 
with similar levels of variation across the different thresholds. With 
the simulation results in mind, it could be argued that both methods 
are equally valid in this case as long as sample sizes are satisfactory, 
and the choice between them might depend on other conditions and 
computational resources. As a general rule, we recommend filtering 
data with several thresholds to obtain an overview of the variability 
produced by each method. This is especially important because the 
95% CIs do not provide information about whether the filtered and 
subsampled data set is representative of the initial population and, as 
we show in this study, the differences among subsets of samples from 
the same population can be significant.

A cursory review of recently published DFE estimation studies 
shows that downsampling is the most frequently used of the three 
methods tested here (see Castellano et al., 2019; Chen et al., 2020; 
Gossmann et al., 2010; Liang et al., 2022; Takou et al., 2021). This 
is not surprising, since downsampling is considerably faster than 
imputation, yet retains more data than subsampling. Imputation 
methods require high- quality data sets from the outset to be able 
to make reliable predictions; data sets with high rates of missing 
sites and low levels of genome- wide linkage disequilibrium are not 
ideal for this treatment. With low levels of genome- wide linkage 
disequilibrium, the presence/absence of any given SNP is mostly 
uncorrelated with the presence/absence of any other SNP, mean-
ing that there are no patterns of linkage disequilibrium among 
sites from which imputation can accurately predict the state of 
a missing site. In such cases, downsampling might be a better 
choice. With the current rate of improvement in both genome- 
wide sequence data and computing power, however, we predict an 
increasing popularity of imputation as a data processing method in 
DFE estimation and other population genomics analyses. We rec-
ommend prefacing any missing- data treatment with an analysis of 
the prevalence of missing sites and the level of linkage disequilib-
rium to determine whether imputation is the appropriate method 
for each data set.

4.2  |  Very small sample sizes skew the 
estimated DFE

A review on DFE estimated in 139 plant and animal species (Chen 
et al., 2017), each with between 2 and 50 chromosomes sampled, 

shows very different DFE distributions. We evaluated the effects 
of the number of sampled individuals on the estimated DFE when 
the number of sites was not a limiting factor. We found that DFE 
estimated from few individuals (<8) were strongly skewed compared 
with larger sample sizes. In simulated data sets with no missing data, 
the accuracy of the estimated DFE was highest in the largest sam-
ple (100 individuals) and lowest in the smallest samples (4 and 8 in-
dividuals), and the samples with >8 individuals displayed markedly 
improved accuracy of DFE estimates. Similarly, DFE estimates based 
on four individuals produced the least accurate results using both 
downsampling and imputation for missing- data treatment.

In the empirical trials, DFE estimates between random sets of 
four individuals were rather unstable in the Austrian population. In 
the Norwegian data set subsampled at 10% that kept only two dip-
loid individuals, the proportion of slightly deleterious mutations was 
greatly overestimated compared to that of the full population size. 
Results stabilized with a sample size of 8 or more, which is consistent 
with the findings from the simulated data sets. This suggests that 
a relatively small number of individuals is needed for reliable DFE 
estimates when there are many sites available, but that very limited 
sample sizes increases the risk of producing nonrepresentative re-
sults. We thus deem the potential effects of low sample size to be 
alarming due to their unpredictable and stochastic nature, and cau-
tion against using sample sizes below four diploid individuals (eight 
haploids).

4.3  |  Limited sites cause high variability in 
DFE results

Reducing the number of sites resulted in highly variable and unpre-
dictable DFE estimates even with larger sample sizes. Overall, the 
negative correlation was observed between the number of SNPs and 
EMD values in the simulated data sets indicates that the accuracy of 
SFS- based DFE estimation is limited by the number of SNPs avail-
able. This trend was also observed in the empirical data, where esti-
mates based on 1M, 10M and 55M sites in 29 individuals all looked 
similar, but using 1K– 10K sites (59– 571 SNPs) produced highly dis-
similar results, demonstrating the importance of having a sufficient 
number of sites and SNPs for reliable SFS- based analyses. The DFE 
is estimated from SFS, that is the distribution of SNPs of different 
frequencies in the population. Thus, the number and specific subset 
of SNPs directly affect the resolution to which we can estimate the 
shape of the DFE. This would explain why the 95% CIs increased in 
size as the number of sites decreased. At 1K– 10K sites, the confi-
dence intervals spanned the entire range of possible values for sev-
eral of the mutational categories (Figure 3b). For these data sets, 
we are therefore left with no confidence that our predicted DFE is 
close to the true DFE. If the CIs are ignored, the very different DFE 
estimates from subsets of the same data set could lead to different 
interpretations of the selection pressures acting on the population. 
This result illustrates a clear type 1 error; the estimated DFE from 
our samples of 1K, 10K and 100K sites are not representative of the 
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full set of sites and produce incorrect inferences that imply differ-
ences in the underlying DFE, despite being random subsets of the 
same data set.

Based on both the empirical and simulated trials, we conclude 
that DFE estimates of DFE become stochastic and unpredictable 
with very small number of sites/SNPs, and accuracy is expected 
to increase significantly with the number of SNPs included; at 
least 5K SNPs are required to obtain reliable DFE estimates using 
DFE- alpha.

4.4  |  Population structure may skew DFE estimates

By combining samples from the Austrian and Norwegian populations 
into merged populations, we were able to see how the composition 
of populations affects DFE estimates. One trend was immediately 
clear: the estimated proportion of strongly deleterious mutations 
was higher in the merged populations than in the contributing single 
population subsets. A high FST may skew the DFE towards higher 
estimated proportions of neutral and strongly deleterious mutations 
and lower proportions of slightly and moderately deleterious muta-
tions. This correlation may not be conclusive, but it indicates that 
population structure can indeed affect DFE and should be taken 
into consideration when performing these analyses at a species 
level. Studies on DFE often include multiple or combined popula-
tions to gain a global estimate that characterizes the organism or 
species (Chen et al., 2017; Hämälä & Tiffin, 2020; Slotte et al., 2010; 
Zhao et al., 2020). We cannot presently state that pooled samples 
will always skew the inferred DFE, but it is advisable to estimate 
the DFE separately in individual populations, as well as from pooled 
samples to evaluate any deviations caused by pooling that might in-
form conclusions drawn from the results. A recent study developed 
a joint DFE approach that enables the analysis of pairs of populations 
(Huang et al., 2021), which could be practical in examining variance 
of DFE among populations.

5  |  CONCLUSIONS

Accurate estimation of DFE from genomic data hinges on several 
factors, including the number of sampled individuals, the availabil-
ity of sites and SNPs, and the approach employed to address miss-
ing data. Our study, which utilized both empirical data and forward 
simulations, explored all these aspects and offers guidance for ex-
perimental design of DFE estimation studies. We found that down-
sampling is a dependable method of handling missing data, though it 
may still impact the DFE to some extent. Imputation, while generally 
accurate, may be less suitable for small samples (≤100 individuals, 
<10K SNPs) or when genome- wide linkage disequilibrium is very low 
(as is often the case with highly outbreeding species). We demon-
strated that DFE estimates derived from data sets with ≤4 diploid 
individuals or ≤5K SNPs may be unreliable due to the risk of sampling 
error and the limited amount of information in the SFS. Furthermore, 

strong population structure within samples can potentially skew 
DFE estimates.

More advanced methods of DFE estimation employ an unfolded 
SFS, where each SNP is categorized as ancestral or derived based 
on an outgroup reference genome. While model species can benefit 
from these sophisticated techniques, most studies must still rely on 
methods utilizing the folded SFS, and frequently deal with limited 
sample sizes. Given the extensive body of previously published work 
employing folded SFS, it is imperative to be able to understand the 
expected accuracy of DFE estimates in comparative analyses. This 
study highlights the factors that should be considered when inter-
preting DFE estimates, thereby enhancing the reliability and rele-
vance of future research.
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